Iterates of a Product of Conditional Expectation Operators

نویسنده

  • GUY COHEN
چکیده

Let (Ω,F , μ) be a probability space and let T = P1P2 · · ·Pd be a finite product of conditional expectations with respect to the sub σ-algebras F1,F2, . . . ,Fd. Since conditional expectations are contractions of all Lp(μ) spaces, p ∈ [1,∞], so is T . When d = 2, Burkholder and Chow [2] proved that for every f ∈ L2(μ) the iterates T f converge a.s. (and thus also in L2-norm) to the conditional expectation with respect to F1 ∩ F2. The L2-norm convergence had been proved by von-Neumann [5, Lemma 22]. The main property of T when d = 2 is that T n = (P1P2P1) P2 with P1P2P1 self-adjoint in L2, so from the work of Stein [9] it follows that the a.e. convergence of {T f} holds also for any f ∈ Lp(μ), p > 1 (one needs to show only for p < 2). Rota’s work [7] yields a different proof, which in fact proves the a.e. convergence of {T f} when f ∈ L log L (see [1]). Ornstein [6] showed that for f ∈ L1(μ) almost everywhere convergence need not hold (although L1-norm convergence does). For arbitrary d, the L2-norm convergence of T f , f ∈ L2(μ), was proved by Halperin [4] (and the limit is the conditional expectation with respect to F1 ∩ F2 ∩ · · · ∩ Fd). Zaharopol [12] proved that the iterates T f converge in Lp-norm for f ∈ Lp(μ), p ≥ 1 (for p ≤ 2 this follows from [4]). Delyon and Delyon [3] proved that T f converges a.e. for any f ∈ L2(μ). In this note we show that for every f ∈ Lp(μ), p > 1, the sequence {T f} converges μ-a.e., with

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some algebraic properties of Lambert Multipliers on $L^2$ spaces

In this paper, we determine the structure of the space of multipliers of the range of a composition operator $C_varphi$ that induces by the conditional expectation between two $L^p(Sigma)$ spaces.

متن کامل

On reducibility of weighted composition operators

In this paper, we study two types of the reducing subspaces for the weighted composition operator $W: frightarrow ucdot fcirc varphi$ on $L^2(Sigma)$. A necessary and sufficient condition is given for $W$ to possess the reducing subspaces of the form $L^2(Sigma_B)$ where $Bin Sigma_{sigma(u)}$. Moreover, we pose some necessary and some sufficient conditions under which the subspaces of the form...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007